Home Four steps to AI and machine learning success
 

Keywords :   


Four steps to AI and machine learning success

2021-03-16 16:16:15| The Webmail Blog

Four steps to AI and machine learning success nellmarie.colman Tue, 03/16/2021 - 10:16   AI and machine learning (AI/ML) are hot topics, as businesses bring together cloud-based compute, memory and networking with an explosion of new data. This powerful combination is helping businesses deliver superior customer-centric experiences, understand their business environment like never before and drive new levels of efficiency. But achieving these AI/ML-driven successes is tough. In a recent Rackspace Technology-sponsored study, only 17% of respondents report mature AI/ML capabilities. The majority of respondents (82%) are still exploring or are struggling to operationalize AI/ML models.   Why AI and machine learning efforts fail According to the study, businesses are struggling with their AI/ML efforts for several reasons: Failure to get the right data to the right app or point-of-analysis in real time Your machine learning training is only as good as the data you feed into your AI/ML frameworks and intelligent applications. If the data is bad, old or incomplete, the training will be poor and the answers and results generated will be (at best) equal to the quality of the data and perhaps flat out wrong.   Lack of organizational collaboration Designing the right machine learning training and AI algorithms requires a holistic understanding of the data and processes that youre automating, across organizational boundaries. This requires communication and buy-in across the business. Lack of collaboration often yields a poor implementation, lower-quality data and rejection of the applications/automation projects by key parts of the organization.   IT and business process immaturity If your IT and business processes are not well formed, then its likely your data is not complete, and the AI/ML execution will be sub-par. Also, AI/ML is best served with rapid iterations and improvements in the data and algorithms something that happens most effectively in a DevOps culture.   Lack of expertise in mathematics, algorithm design or data science and engineering Since AI and machine learning are built on high-quality, timely data and well-formed algorithmsrepresenting the best in processes and models of the real world skills are critical. And finding the talent is tough in todays market.   But with the right AI/ML strategy, you can overcome these challenges. Lets dive deeper into how you can make this happen.   Four steps to AI and machine learning success Step 1: Build the foundation You must start by preparing your data and applications to migrate to the right multicloud and data architecture environments. This includes getting to know and understand your current environment and requirements and defining a roadmap. Be sure that the data architecture supports the new application deployments appropriately, and that you can minimize ingress/egress fees while also maximizing performance and availability. This is also the stage when database transformations and data warehouse migrations are implemented.   Step 2: Modernize the data architecture Defining the modern data architecture, strategy and roadmap drives the transition into this phase. Here, youll focus on modernizing your data architecture defining, designing and building the data fabric. This includes pipelines and integration, data lakes and warehouses, and the analytics platform. You can start on this while youre working on Step 1, or at least execute the migration with an eye toward data architecture modernization.   Step 3: Set the stage for more innovation AI/ML prepares your organization for high-quality automation and predictive intelligence driving innovation to the next level. At this stage, youll be planning the data science by designing, training and deploying the models, and operationalizing machine learning (MLOps). This enables you to deliver greater value to the modern cloud and data architecture you built in Steps 1 and 2.   Step 4: Build intelligent applications Finally, youre ready to start delivering strategic value and capability, where you can realize the full value of this new cloud-based data fabric youve created. You can employ intelligent applications that incorporate chatbot services, natural language processing, machine vision, recommendation engines, predictive maintenance and even actions and get value from IoT data. Its all possible now and forms a new foundation for your business.   Expert guidance for your AI and machine learning journey When your data works harder for you, you can take your resources further, delivering intelligent applications, services and results. This, in turn, enables you to make smarter decisions, improve collaboration, deliver new revenue streams and business models, and transform customer experiences. Do you need help getting the right data to the right application at the right business moment, while delivering a new level of business insights? Our experts are here to help. Let our specialists help you harness the power of modern data architecture and AI.   Four steps to AI and machine learning successOrganizations are using AI and machine learning to make smarter decisions, improve collaboration, deliver new revenue streams and transform customer experiences. But the journey to success is tough. Heres how to set yourself up for success. How are businesses investing in AI and machine learning?/solve/succeeding-ai-mlRead the report

Tags: learning success machine steps

Category:Telecommunications

Latest from this category

All news

»
27.11 PSA10 () SCR
27.111108
27.11
27.11
27.11SAKEROCK/ 0
27.11Influence THEROW
27.11 A
27.11FIRSTSPEAR
More »